1,408 research outputs found

    Reversing a granular flow on a vibratory conveyor

    Full text link
    Experimental results are presented on the transport properties of granular materials on a vibratory conveyor. For circular oscillations of the shaking trough a non-monotonous dependence of the transport velocity on the normalized acceleration is observed. Two maxima are separated by a regime, where the granular flow is much slower and, in a certain driving range, even reverses its direction. A similar behavior is found for a single solid body with a low coefficient of restitution, whereas an individual glass bead of 1 mm diameter is propagated in the same direction for all accelerations.Comment: 4 pages, 5 figures, submitted to Applied Physics Letter

    Riemann solvers and undercompressive shocks of convex FPU chains

    Full text link
    We consider FPU-type atomic chains with general convex potentials. The naive continuum limit in the hyperbolic space-time scaling is the p-system of mass and momentum conservation. We systematically compare Riemann solutions to the p-system with numerical solutions to discrete Riemann problems in FPU chains, and argue that the latter can be described by modified p-system Riemann solvers. We allow the flux to have a turning point, and observe a third type of elementary wave (conservative shocks) in the atomistic simulations. These waves are heteroclinic travelling waves and correspond to non-classical, undercompressive shocks of the p-system. We analyse such shocks for fluxes with one or more turning points. Depending on the convexity properties of the flux we propose FPU-Riemann solvers. Our numerical simulations confirm that Lax-shocks are replaced by so called dispersive shocks. For convex-concave flux we provide numerical evidence that convex FPU chains follow the p-system in generating conservative shocks that are supersonic. For concave-convex flux, however, the conservative shocks of the p-system are subsonic and do not appear in FPU-Riemann solutions

    On the Quantum Invariant for the Brieskorn Homology Spheres

    Full text link
    We study an exact asymptotic behavior of the Witten-Reshetikhin-Turaev invariant for the Brieskorn homology spheres Σ(p1,p2,p3)\Sigma(p_1,p_2,p_3) by use of properties of the modular form following a method proposed by Lawrence and Zagier. Key observation is that the invariant coincides with a limiting value of the Eichler integral of the modular form with weight 3/2. We show that the Casson invariant is related to the number of the Eichler integrals which do not vanish in a limit τNZ\tau\to N \in \mathbb{Z}. Correspondingly there is a one-to-one correspondence between the non-vanishing Eichler integrals and the irreducible representation of the fundamental group, and the Chern-Simons invariant is given from the Eichler integral in this limit. It is also shown that the Ohtsuki invariant follows from a nearly modular property of the Eichler integral, and we give an explicit form in terms of the L-function.Comment: 26 pages, 2 figure

    Quantum Invariants, Modular Forms, and Lattice Points II

    Full text link
    We study the SU(2) Witten--Reshetikhin--Turaev invariant for the Seifert fibered homology spheres with M-exceptional fibers. We show that the WRT invariant can be written in terms of (differential of) the Eichler integrals of modular forms with weight 1/2 and 3/2. By use of nearly modular property of the Eichler integrals we shall obtain asymptotic expansions of the WRT invariant in the large-N limit. We further reveal that the number of the gauge equivalent classes of flat connections, which dominate the asymptotics of the WRT invariant in N ->\infinity, is related to the number of integral lattice points inside the M-dimensional tetrahedron

    Skin microbiota analysis in patients with anorexia nervosa and healthy-weight controls reveals microbial indicators of healthy weight and associations with the antimicrobial peptide psoriasin

    Get PDF
    Anorexia nervosa (AN), a psychiatric condition defined by low body weight for age and height, is associated with numerous dermatological conditions. Yet, clinical observations report that patients with AN do not suffer from infectious skin diseases like those associated with primary malnutrition. Cell-mediated immunity appears to be amplified in AN; however, this proinflammatory state does not sufficiently explain the lower incidence of infections. Antimicrobial peptides (AMPs) are important components of the innate immune system protecting from pathogens and shaping the microbiota. In Drosophila melanogaster starvation precedes increased AMP gene expression. Here, we analyzed skin microbiota in patients with AN and age-matched, healthy-weight controls and investigated the influence of weight gain on microbial community structure. We then correlated features of the skin microbial community with psoriasin and RNase 7, two highly abundant AMPs in human skin, to clarify whether an association between AMPs and skin microbiota exists and whether such a relationship might contribute to the resistance to cutaneous infections observed in AN. We find significant statistical correlations between Shannon diversity and the highly abundant skin AMP psoriasin and bacterial load, respectively. Moreover, we reveal psoriasin significantly associates with Abiotrophia, an indicator for the healthy-weight control group. Additionally, we observe a significant correlation between an individual’s body mass index and Lactobacillus, a microbial indicator of health. Future investigation may help clarify physiological mechanisms that link nutritional intake with skin physiology

    An Exact Black Hole Entropy Bound

    Get PDF
    We show that a Rademacher expansion can be used to establish an exact bound for the entropy of black holes within a conformal field theory framework. This convergent expansion includes all subleading corrections to the Bekenstein-Hawking term.Comment: 6 pages, Latex, v2 minor re-wording, additional reference, to appear in Phyical Review D (title changed in journal

    Spherical Casimir energies and Dedekind sums

    Full text link
    Casimir energies on space-times having general lens spaces as their spatial sections are shown to be given in terms of generalised Dedekind sums related to Zagier's. These are evaluated explicitly in certain cases as functions of the order of the lens space. An easily implemented recursion approach is used.Comment: 18 pages, 2 figures, v2:typos corrected, inessential equation in Discussion altered. v3:typos corrected, 1 reference and comments added. v4:typos corrected. Ancillary results added in an appendi
    corecore